An inequality
Prove that $e^{2x} (x^2-x+1) > x^2+x+1$ if $x>0$.
//Proof// By Taylor expansion, we have
\begin{equation}
\begin{split}
e^{2x} (x^2-x+1) &> (1+2x + (2x)^2/2)(x^2-x+1) ~\\
&=(1+2x+2x^2)(x^2-x+1) ~\\
& =1+2x+2x^2 -x-2x^2 -2x^3 + x^2 + 2x^3 + 2x^4 ~\\
&=2x^4 + x^2 +x+1~\\
&>x^2 + x+1
\end{split}
\end{equation}