Hamiltonian, Symplectic form, Jacobi identity
== Section 1.4 in [Tao06]:
=== Exercise 1.32
Since $\p_t u = \grad_\omega H$, we have
$$\begin{equation}
\begin{split}
\f{d\omega(\p_x u,\p_y u)}{dt} &= \omega(\p_x\grad_\omega H, \p_y u) +\omega(\p_x u, \p_y\grad_\omega H)~\\
&=\p_x \omega(\grad_\omega H,\p_y u) + \p_y\omega(\p_x u, \grad_\omega H)~\\
&=\p_x(dH\cdot \p_y u) - \p_y(dH\cdot\p_x u)~\\
&=0.
\end{split}
\end{equation}$$
where the second equality results from that $\omega$ is anti-symmetric, and the equality is by definition.
=== Exercise 1.35
By definition, we first have
$$\begin{equation}
\begin{split}
\{ H,E\}&=\omega(\grad_\omega H, \grad_\omega E)=(dH\cdot\grad_\omega E)~\\
&=-\omega(\grad_\omega E, \grad_\omega H) = -(dE\cdot\grad_\omega H).
\end{split}
\end{equation}$$
We then calculate
$$\begin{equation}
\begin{split}
\{ H_1, \{H_2, H_3\}\} & = -d(dH_2\cdot\grad_\omega H_3)\cdot\grad_\omega H_1 ~\\
&=-[d^2H_2\cdot\grad_\omega H_3 + dH_2\cdot d\grad_\omega H_3]\cdot \grad_\omega H_1,
\end{split}
\end{equation}$$
Similarly,
\begin{equation}
\begin{split}
\{ H_3, \{H_1, H_2\}\}=-\{ H_3, \{H_2, H_1\}\}=[d^2H_2\cdot\grad_\omega H_1 + dH_2\cdot d\grad_\omega H_1]\cdot \grad_\omega H_3.
\end{split}
\end{equation}
Adding the above two identities gives
$$\begin{equation}
\begin{split}
\{ H_1, \{H_2, H_3\}\} + \{ H_3, \{H_1, H_2\}\} &= - [d^2H_2\cdot\grad_\omega H_3]\cdot \grad_\omega H_1 + [d^2H_2\cdot\grad_\omega H_1]\cdot \grad_\omega H_3 ~\\
&=-dH_2\cdot \omega(\grad_\omega (\grad_\omega H_3), \grad_\omega H_1) + dH_2\cdot \omega( \grad_\omega (\grad_\omega H_1), \grad_\omega H_3 ) ~\\
&=dH_2\cdot \grad_\omega\{H_1,H_3\}~\\
&=-\{ H_2, \{H_3, H_1\}\},
\end{split}
\end{equation}$$
which verifies the Jacobi identity.
=== References:
[Tao06] Terence Tao, Nonlinear dispersive equations: local and global analysis, CBMS regional conference series in mathematics, July 2006.