$$\def\ep{\epsilon} \def\f{\frac} \def\df{\dfrac} \def\p{\partial} \def\grad{\nabla} \newcommand{\abs}[1]{ \left| #1 \right|} \newcommand{\norm}[1]{\big\lVert#1\big\rVert} \newcommand{\inner}[2]{\langle #1, #2 \rangle} $$
Aimin's Mathbook

Aimin's Mathbook

Work hard makes life better

Categories

  • Paper Reading Notes
  • Partial Diff. Eqn.
  • Diff. and Riem. Geom.
  • Harmonic Analysis
  • Prob. and Stoc. PDE
  • Inequalities
  • Dynamical System
  • Hamiltonian
  • Functional Analysis
  • Question?
  • Matlab
  • Script for Math
  • MISC

Archives

  • September, 2014 (1)
  • May, 2014 (1)
  • April, 2014 (2)
  • March, 2014 (1)
  • February, 2014 (1)
  • January, 2014 (1)
  • December, 2013 (1)
  • November, 2013 (2)
  • September, 2013 (4)
  • May, 2013 (1)
  • March, 2013 (3)
  • December, 2012 (8)
  • November, 2012 (1)
  • October, 2012 (1)
  • September, 2012 (8)
  • August, 2012 (16)
  • July, 2012 (4)
  • September, 2011 (1)
 
 
Home

All articles published under Harmonic Analysis

  • Proof of Layer cake representation
  • Uncertainty principle in Fourier transform
  • Complete set and orthonormal basis for some L^2 spaces
  • A variant of Hardy inequality
  • TT* Method
  • An estimate on R^n
  • Dyadic grid over the interval [0,1]

 
 

Aimin's other websites:   Notebook Codebook FinanceNote Mathcareer

Copyright (c) 2011-2012 7starsea.com. All rights reserved. Theme is inspired by Eugene Ross